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Timeline Barriers
. Start date: 1 February 2008 « Very high-efficiency solar cells
. End date: 31 January 2011 an essential component for

concentrating PV

 Robustness under spectral
variability desirable
= single pn junction structures
Budget = multijunction, non-series
connected devices

* Percent complete: 70%

« Total project funding

_ DOE share: $604,000 Partners
Project lead:

— Contractor share: 20% t
Shoanri:]agc orenarE oo University of California, San Diego
. . . University of Texas at Austin
« Funding received in FYQ9: . L
$224 000 . Interactlons(colIaboratlons.
j Spire Semiconductor
* Funding for FY10: Jet Propulsion Laboratory
$140,000 to date Boeing/Spectrolab
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Challenges, Barriers or Problems ENERGY | roncratio trony

Challenges
« High-efficiency solar cells required for applications such as terrestrial
concentrating photovoltaics

* Quantum-well solar cells and related structures offer potential for very
high efficiency (~45% to >60% theoretically predicted efficiencies)

« Substantial challenges in materials and devices:
— High quality heterostructures to minimize recombination rates

— Engineering carrier and photon transport paths to achieve simultaneously high
efficiency in photon absorption and photogenerated carrier collection

Importance

« Multijunction tandem solar cells can provide high efficiency, but
potentially sensitive to terrestrial spectral variations

« Single pn junction structures (e.g., quantum-well, intermediate-band
solar cells, etc.) can theoretically provide comparable efficiency with
much less spectrum sensitivity

« Success in developing high-efficiency devices of these types should
improve viability of large-scale concentrating photovoltaic systems
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Objectives

* Overall objective: development and demonstration of high-efficiency
photovoltaic device concepts based on semiconductor nanostructures
— Quantum-well solar cells and related devices
— Nanowire-based solar cells

« 2009-2010 objective: build upon initial demonstrations of key device concepts
to explore routes to increased power conversion efficiency

— Engineering of waveguiding properties of quantum-well solar cell devices for photon management
—  Optimization of internal quantum-well structure for increased optical absorption
— Improved growth and fabrication of nanowire-based solar cell structures

Relevance

« 2009-10 objectives represent key steps in realization of devices with high
absolute levels of power conversion efficiency

» High absolute power conversion efficiency in quantum-well solar cells or other
single-pn junction photovoltaic devices will enable high efficiency to be
achieved over broad range of illumination spectra

« Devices developed in this project could be a key component in terrestrial
concentrating photovoltaic systems 4
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Predicted maximum power conversion efficiencies for quantum-well solar cells

are ~45% to ~63% (vs. ~31% to ~37% for “conventional” solar cell)

[G. Wei, K.T. Shiu, N.C. Giebink, S.R. Forrest, Appl. Phys. Lett. 91, 223507 (2007);
S.P. Bremner, R. Corkish, C.B. Honsberg, IEEE Trans. Electron Devices 46, 1932 (1999).]

Quantum well solar cell challenges
e Multiple-quantum-well materials issues, e.g., critical thickness, interface quality, recombination
e High quantum efficiency in long-wavelength absorption
e Efficient carrier extraction from quantum wells 3
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* In conventional device geometry, design requirements for efficient photon

absorption and efficient photogenerated carrier collection are incompatible
« Efficient absorption requires thickness ~1um
« Efficient carrier collection requires thickness ~0.2-0.3um

* Index contrast leads to optical confinement in multiple-quantum-well region
= optically confined, lateral photon propagation paths supported
« Metal (or dielectric) nanoparticles can scatter photons into lateral paths

— Broader-band effect than, e.g., grating scatterers
— FEasy to fabricate
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wide bandgap

narrow bandgap .
nanowires

nanowire

low-cost substrate

» Core-shell nanowires can enable realization of quantum-well solar
cell concept in alternate geometry with potentially relaxed lattice
mismatch constraints

« Nanowire-based photovoltaics could facilitate use of high-quality,
crystalline semiconductor material with support substrates that are
low-cost, flexible, etc.
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» Key project collaborators

— Spire Semiconductor: collaboration in development and supply of
epitaxial heterostructure material for quantum-well solar cells and
related structures.

— NASA Jet Propulsion Laboratory: collaboration in development and
implementation of wafer thinning and substrate removal processes.

— Boeing/Spectrolab: collaboration in adaptation of nanoparticle
scattering effects for multijunction tandem solar cells.

— University of Karlsruhe: collaboration in development of quantum dot
and dot-in-well structures for high-efficiency solar cells.

« Collaborators listed here are not funded through this DOE
program.
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Results — QWSC demonstration
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MQW absorption and
nanoparticle scattering
concepts demonstrated
in lattice-matched
InP/InGaAsP MQW
structures grown by
MOCVD

Room-temperature
photoluminescence and
x-ray diffraction confirm
reasonable lattice match,
reduced band gap in
quantum-well layers

refractive index profile
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Barrier-only and quantum-well
devices show clear photocurrent

response at wavelengths beyond InP
band gap

Quantum-well device shows ~5-7%
increased power output over barrier-
only and InP-only control devices
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* InGaAsP-InP multiple-quantum-well solar cell exhibits clear response below InP
bandgap due to MQW absorption
* Functionalization with 100nm Au nanoparticles generates plasmonic effects:

— Forward scattering into semiconductor device region
— Excitation of optically confined modes in MQW region
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 Highly unoptimized device shows ~13% increase in short-circuit current density,
~17% increase in power conversion efficiency due to SiO, nanoparticle scattering

« Au nanoparticles yielded ~7% increase in current, ~1% increase in power

conversion efficiency
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InAs/InGaAs/GaAs quantum dot-in-well solar cell structures also
successfully fabricated and demonstrated

Quantum-dot structures enable photocurrent response to be extended to
longer wavelengths than quantum-well structures

Nanoparticle scattering effects also enable improved absorption efficiency
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* Introduction of internal structure within quantum well can
substantially alter electron-hole wavefunction overlap and optical
absorption efficiency

« 1D Poisson-Schrodinger simulations allow internal structure and
resulting wavefunctions in quantum wells to be computed and
optimized
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» Bias dependence of electron and hole wavefunctions must be taken into account
in device designs

« Samples have been grown by MOCVD and experimental measurements are
underway
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Results — photon propagation analysis ENERGY |roe i care

1SU5n|np n|npsu

propagating  “leaky” guided
« Coupling of photons scattered by nanoparticles into waveguide modes

modeled using horizontal radiating dipole at device surface

« “Leaky” and guided modes could contribute to additional absorption and
photocurrent generation in semiconductor
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Results — photon propagation analysis ENERGY |roe i care

10 — =t ' : Ly el e = —s—1150nm
@ [ I. —4—1100nm
- 5 3 | o —+—1050nm
F a 8 | . A\‘a —e— 1000nm
.S. 1 g- g / ..‘ R Badat 7
1 S % k.
E 3 § 1 .I **** **' l
g ; .
% 0.1 % *"r,
. !'.3 Ey .,
H z )
8 a
0.01 ' : ' ' ' ' 01320 3284 328 332 336  3.40
00 05 10 15 20 25 3.0 3.5 . . . . - .
orn . uorn

« Coupling efficiency into guided modes <10%, but
coupling into “leaky” + guided modes ~80-90%

« Key issue for efficient coupling into guided modes is
large refractive index contrast
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« High refractive index contrast allows ~60-90% coupling efficiency of
scattered light into guided modes over broad range of wavelength

« Wafer thinning/bonding and related materials integration techniques enable
quantum-well solar cell structures with optimum waveguiding and coupling

* Preliminary simulations indicate that with minimal optimization, >1.25x
improvement in efficiency compared to same cell without scattering (but
with antireflection coating) is attainable
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* n-InAs nanowires successfully grown on Si (111) substrates

InAs nanowires on Si exhibit photovoltaic device behavior, but with low
power conversion efficiency (~1-2.5%)

InAs nanowires can eventually serve as core of high-efficiency core-shell
nanowire heterostructure photovoltaic device
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» Growth of uniform core/multi-shell heterostructures
(InAs/InGaAs/GaAs/InGaP) successfully demonstrated

o Core/multi-shell heterostructures could serve as basic element of
high-efficiency nanowire photovoltaic devices

* Interestingly, nanowires are (111) zincblende rather than wurtzite, as
IS typical
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Results — nanowire growth on low- N R —
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* InAs nanowires have been successfully grown by MOCVD
directly on low-cost metal foil substrates, e.g., Au or Cu foils

» High-quality nanowire growth on low-cost substrates could
help enable low-cost, high-efficiency nanowire-based
photovoltaic devices
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* Project is on budget
— Total DOE funding of $604,000 to date + 20% cost share
— In process of transitioning portion of funding from UCSD to UT
Austin
« Potential area for expansion: integration of
nanostructure scattering and photon management
concepts into optical slab concentrator structures for new

» Optical metamaterials enable
wavelength-dependent transmission
and scattering of incident light

* Metamaterials integrated with optical

5 slab concentrator could enable mm-scale
‘f“ ‘ photon management techniques to be
samsmmEnnE exploited in high-efficiency multijunction

e e (A Auetal, UTAusing  Solar cell concept

b} Wavelength A, [ nm ]
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* Project plans for FY2010 and FY2011:

— Fabrication and demonstration of ultrathin quantum-well solar cell
device with optimized optical coupling to device waveguide modes

— Continued engineering of quantum-confined structures for improved
optical absorption

— Nanowire growth and device development on low-cost substrates
and with heterostructures for improved power conversion efficiency

« Upcoming key milestones:

— 7/1/10, 1/31/11: fabrication and characterization of quantum-well
solar cell device incorporating substrate removal process,
antireflection coating, and nanostructured scattering elements

— 7/1/10, 1/31/11: demonstration of improved power conversion
efficiency in nanowire photovoltaic devices
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* New solar cell concepts offering high power conversion efficiency over broad
range of illumination conditions likely to be needed for applications such as
concentrating photovoltaics

* Quantum-well solar cells and related concepts offer theoretically predicted
efficiencies of ~45% to >60% over broad range of illumination conditions

— Plasmonics and nanoparticle scattering effects can facilitate simultaneously high efficiency in both
optical absorption and photogenerated carrier collection

— Nanowires offer alternate geometry for these concepts as well as potential for direct integration on
low-cost substrates
* Key basic elements have been successfully demonstrated:
—  Photocurrent response over extended wavelength range due to quantum-well absorption
— Plasmonic and nanoparticle scattering for improved long-wavelength optical absorption

—  Engineering of internal quantum well structure (potential steps within quantum well, dot-in-well
structures) used to further improve optical absorption

— Numerical simulations and designs developed for ultrathin, high-efficiency devices

— IlI-V nanowire growth on Si substrates and photovoltaic device operation achieved

— Nanowire core-shell heterostructure growth and growth on low-cost metal foil substrates achieved
* Program on track for demonstration of high-efficiency devices based on these

concepts

» Potential for program expansion to exploit photon management concepts in
more complex high-efficiency device geometries 24
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